Hyperbolic functions calculator

Calculation of hyperbolic functions

This page exists due to the efforts of the following people:



Karen Luckhurst

Created: 2011-06-17 22:08:52, Last updated: 2020-12-18 12:20:08

This online calculator shows the values of hyperbolic functions of a given argument. The definitions of functions are below

PLANETCALC, Hyperbolic Functions

Hyperbolic Functions

Digits after the decimal point: 2
The file is very large. Browser slowdown may occur during loading and creation.

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent
\operatorname{th}x=\frac{\operatorname{sh}x}{\operatorname{ch}x} = \frac {e^x - e^{-x}} {e^x + e^{-x}} = \frac{e^{2x} - 1} {e^{2x} + 1}

Hyperbolic cotangent

Hyperbolic secant

Hyperbolic cosecant

Functions sh, ch, th, sech are continuous functions. Functions cth, csch are not defined for x=0.

A hyperbolic sine is an increasing function passing through zero – \operatorname{sh}0=0.
A hyperbolic cosine is an even function where \operatorname{ch}0=1 is the minimum.

URL copied to clipboard
PLANETCALC, Hyperbolic functions calculator