Hyperbolic functions calculator

Calculation of hyperbolic functions

This online calculator shows the values of hyperbolic functions of a given argument. The definitions of functions are below

PLANETCALC, Hyperbolic Functions

Hyperbolic Functions

Digits after the decimal point: 2
The file is very large. Browser slowdown may occur during loading and creation.

Hyperbolic Functions

NotationFunction NameValue
shhyperbolic sine1.18
chhyperbolic cosine1.54
thhyperbolic tangent0.76
cthhyperbolic cotangent1.31
sechhyperbolic secant0.65
cschhyperbolic cosecant0.85



Hyperbolic sine
\operatorname{sh}x=\frac{e^x-e^{-x}}{2}

Hyperbolic cosine
\operatorname{ch}x=\frac{e^x+e^{-x}}{2}

Hyperbolic tangent
\operatorname{th}x=\frac{\operatorname{sh}x}{\operatorname{ch}x} = \frac {e^x - e^{-x}} {e^x + e^{-x}} = \frac{e^{2x} - 1} {e^{2x} + 1}

Hyperbolic cotangent
\operatorname{cth}x=\frac{1}{\operatorname{th}x}

Hyperbolic secant
\operatorname{sech}x=\frac{1}{\operatorname{ch}x}

Hyperbolic cosecant
\operatorname{csch}x=\frac{1}{\operatorname{sh}x}

Functions sh, ch, th, sech are continuous functions. Functions cth, csch are not defined for x=0.

A hyperbolic sine is an increasing function passing through zero – \operatorname{sh}0=0.
A hyperbolic cosine is an even function where \operatorname{ch}0=1 is the minimum.

URL copied to clipboard
PLANETCALC, Hyperbolic functions calculator

Comments